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MAGNETOACOUSTIC SHOCK WAVES IN A NONUNIFORM PLASMA 

FLOW 

V. A. Pavlov UDC 532.593 

The flow of the solar wind around the planets and other bodies generates a weak magneto- 
acoustic shock wave [i]. The problem of describing a shock wave in a nonuniform plasma flow 
arises in this and similar situations [2]. Here we propose an approximate method of describ- 
ing the field in the vicinity of a magnetoacoustic shock front. Based on the geometrical- 
acoustics (ray) description, this field is represented by a series, in which second-order 
small terms are taken into account by solving a Riccati equation. The magnetoacoustic shock 
intensity is estimated, and a relation is derived between the velocity of the shock front 
and the cross section of the ray tube. An algorithm is proposed for converting the fields 
from the moving frame to the laboratory frame. 

I. We describe the field in the cold plasma by the magnetohydrodynamic (MHD) equations 

O p / O t - ~ d i v  (pv) = 0, d iv  H ~- 0, 

O H / a t  - -  cu r l [v ,  H I -- O, d v / d t  - -  ( ~ / 9 )  [eurlH, H ] -~- g(r) = 0. 
(i.i) 

Here p, v , and H are the density of the plasma, the velocity, and the magnetic field, and 
and g are the permeability and the gravitational acceleration. The subscript 0 refers to 

the unperturbed field: P0 ~ p0(z), v0 ~ v0(z)ex, H0 ~ const. The fields are perturbed by the 
presence of a fixed smooth body, around which the plasma moves in a nonuniform flow. We 
transform to a local coordinate system (frame) associated with the flow velocity v0(z)!e x at 
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the height of the observation point. It differs from the frame introduced in [3], where 
the frame is associated with the flow velocity at the height of the perturbing body. Conse- 
quently, in our frame (in which the fields and coordinates are primed) the plasma is at rest 
in the unperturbed state: v0' = 0. In the cold stationary plasma the magnetoacousticwave 
has the following property in the linear approximation: Energy transport is in the same di- 
rection as the perpendicular to the wave front. We therefore have "isotropicity" in the 
above-mentioned restricted sense. This consideration facilitates the description of the 
wave process in orthogonal ray coordinates ~', ~', 6'. The vector ~' is perpendicular to the 
wave front; ~' and 6' lie on the surface of the wave front. 

Here we consider the situation in which the Cerenkov radiation mechanism is in effect 
[v0 > b0 E (~H02/p0) I/2, where b 0 is the Alfven velocity] and a weak shock wave has been 
generated. To simplify the description of the fields, it is convenient to orient the ~' 

t 

axis normal to H0: ~'~_H 0. This is equivalent to directing ~' along the line of intersection 
of the shock front with the plane perpendicular to H 0' The curving of the shock front in 
the course of its propagation causes ~' to rotate about a' For a magnetoacoustic wave v' 
does not have a projection onto the ~' axis in the frame a', ~', 6' The curvilinear orthogo- 
nal coordinates ~', ~', 6' are related to the laboratory coordinates by the equation 

(h~d~') ~ + (h~d~') ~ + (h~d6') ~ = dx ~ + d~ ~ + ~ 

[ h i ' ( ~ ' ,  ~ ' ,  6 ' )  a r e  t h e  Lame c o n s t a n t s ] .  The wave f r o n t  ( t h e  shock  f r o n t  in  p a r t i c u l a r )  i s  
d e s c r i b e d  by t h e  e x p r e s s i o n  

t - - T ' ( ~ ' , ~ , 5 ~ ) = 0 ,  ~ = c o n s t ,  5 ~ = c o n s t  ( 1 . 2 )  

(~z' and 61 ' characterize the point of intersection of the coordinate line with the front). 
The direction of ~' is given by the unit vector 

e~, = (V)'T'/I (V)'T' [, 

and t h e  v e l o c i t y  o f  t h e  f r o n t  u '  i s  w r i t t e n  in  t h e  fo rm 

(1.3) 

u' (a', ~', 5') = (dr'/dt, ea,). (1.4) 

As a result, 

For the function T' to depend only on the longitudinal coordinate a', the Lame constant hi' 
! ! ! must be chosen so that h I - u We assume below that h z = u'(a', 6', 6')ru'( a ' Q ' t I , ~ 1 ,  

61')] -I, where ~ = ez characterizes the initial value of a' Equation (1.5) is an eikonal 
equation. In the frame ~', ~', 6' we have the relation 

(div)' (ea,/hs = 0, (1.6) 

which represents a transport equation. We set h 2 ' h 3' = A' (A' is the dimensionless cross 
section of a narrow ray tube). This choice of the constants h 2' and h 3' enables us to make 
the limiting transition to the approximation of linear theory. 

We investigate the situation in which the perturbation scale in the directions ~' and 
6, is smaller than the radius of curvature of the front and the inhomogeneity scale of the 
plasma in the investigated region. This condition permits us to regard the perturbations 
as locally homogeneous and to ignore the derivatives in the directions ~' and 6' perpendicu- 
lar to the ray tube. We then obtain the following approximation for a magnetoacoustic wave: 

N r t 

, (A v=,), ( cu r l ) t I '  ~ A' ' a(z' (div)'v' t 0 , ,  0 (A 

h~ a~  ' h ( 1 . 7 )  

' -~1 a (H,=,v,~, - -  H'~,v'~,) e~,. ( c u r l ) '  [v , H ' ]  ~ 

! ! r 

I n  t h i s  p r o b l e m  t h e  p e r t u r b a t i o n  o f  t h e  f i e l d s  (p '  P0), ( H ' - - H 0 ) ,  v ,  ( A ' - - A ' 0 )  (we assume  b e -  
low t h a t  A0' = 0) i s  a t t r i b u t a b l e  t o  t h e  p r e s e n c e  o f  a body moving  t h r o u g h  t h e  p l a s m a ,  so  
t h a t  t h e  a b s e n c e  o f  t h e  body  c o r r e s p o n d s  t o  t h e  a b s e n c e  o f  any  p e r t u r b a t i o n  o f  t h e  f i e l d .  
Fo r  t h e  n o n r e l a t i v i s t i c  f l o w  v e l o c i t i e s  d i s c u s s e d  h e r e ,  H'0 = H 0 -  const. T a k i n g  Eqs .  ( 1 . 7 )  
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into account, we write Eqs. (i.I) for a magnetoacoustic wave far from the body in primed 
coordinates: 

09" -5 t 0 I - - ,  , , x 

ot A,h~O-~A ~ va,) .~G~; (1.8) 
! t t 0 ( A H a , ) ~ O ;  

h~ 0o~' ( 1 . 9 )  

OH'f3, , o ( H ; , + -  R;,~'a,) ~ 6~; 
6t hl 0~' ( 1 . 1 0 )  

t t t 

Ova' Ova, I~Hft, O , , 

0---7- + va '  

t p t r 

Ov~, v a, Ova, ~Hcu  0 , , , 

Ot -5 h~' Oa' 9 ,A ,h~  O a ' ( A H f ~ ' ) + g ~ ' ~ ' G 4  ' ( 1 . 1 2 )  

where G l = v03p'/Sx' ; G: =v08H'8'/3x'; G 3 = v08v'=,/3x' ; G 4 = v03v'~,/3xl; x' = x - v0t. 

We base the ensuing discussion on the satisfaction of a condition that permits the influ- 
ence of the functions G i in Eqs. (1.8)-(1.12) to be disregarded: 

(fl' is the angle between the vectors ~' and x', and f' stands for any one of the functions 
0', v'=,, v'8,, H'~,)_ As a result, we have a constraint on the orientation of the axis of 
the ray tube and on the freestream velocity v0: 

bo < I ~ l <<~ l ~ ,  (oo~ ~)-~ [. 
The unperturbed state of the fields corresponds to the case 3v0~,18~' = 0, ~v0~,ls~ ~ = 

0, 3A0'/8~' = 0, g' = 0, A 0' = 0. One way in which the ray tubes for magnetoacoustic waves 
differ from the ray tubes for a neutral is the two-dimensional character of the plasma mo- 
tion: The velocity has a transverse component v'$, ~ 0. Consequently, a mass flux sets in 
through the lateral surface of the tube. However, the energy flux through the lateral sur- 
face is zero; the tubes are isolated from one another in the energy sense. 

We investigate the fields only in the vicinity of the front (1.2). Two small parame- 
ters are involved in the solution of the problem: weak nonlinearity and the small distance 
from the shock front (1.2), so that one-dimensional field in narrow ray tubes can be de- 
scribed in series form: 

F' ( t , ~ ' )  E F ~ ( ~ ' ) ( t - - ~ ' y ,  A'(~') E ' ' = = A ~ ( a  ). 
n ~ O  n ~ O  

Here ~F'13t' = F z' + 2F2'(t - T') + .... ~F'I~' = dF01da' - F2'dT'/d~' + (t - T')(dF2'/ 
d~' - 2F2'dT'/d~' ) + .... A similar series expansion has been used [3] to describe a sonic 
boom in a nonuniform atmospheric flow. Restricting the series to second-order terms, from 
the system (1.8), (1.9) we obtain the following condition for its solvability in the approx- 
imation G i = 0: 

t 

bo (~ ' )  dT" = ' = ' , ' ' - - i  
s h 1 d~, + t ,  ht +_bo(~ ) [bo (~ l ) ]  . ( 1 . 1 3 )  

The eikonal equation (1.13) corresponds to the equation for the characteristics C+ and C_ 
in the case of the linear approximation. Since we are interested in the outgoing wave, we 
choose the plus sign in Eq. (1.13) and obtain a Riccati equation for v'1~, from Eqs. (1.8)- 
(1.12) with G i = 0: 

( ) ~ , ~ ,  3 ~i~,V~ ~ , ,  
, + D vla, = O, (i.!4) d~' 2 bo 
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where 
t 

D , = i _ a d  in A1 
2 dcz' b'oM'o~, ( 1 . 1 5 )  

The fact that v o' = 0 and dv0'/da' = 0 simplifies the expression for D' considerably. This 
is one of the advantages of choosing a frame attached to the flow (see [3] for comparison). 
In the linear approximation the solution of Eq. (1.14) has the form 

~1~, ~ 1 ~ ,  (~ i ) [B '  ( ~ ' ) ] - I  B' (~') = ~ x p  ~'d~' . 

h rigorous solution of gq. (1.14) is given by the relation 

t 

v'~, [B' ' ' , , , ' 3 h ~ . ,  = (~)//)lC~,(O~;)--(:ID'] -1, ( ID' (o: ' ,oq)=B J _#._(bo)-2(B,)-Id(z,. 

For ~I >> ~iI, ~t >> BI[VL,aw(~II)]-I the function ~' plays the role of a large parameter of 
the problem, and we can adopt the approximation 

r t 

~ i ~ ,  ~ - [~' (~. o ) l  - ~ ,  (1 .  ~6) 

Note that the use of Eq. (i.16) prohibits the limiting transition to the linear approxima- 
tion of the problem. The specific form of D' given by Eq. (1.15) can be used to write the 
function B' in the form 

B' = [(A'I (a')/A'~ (0)) (bt0 (O)/b'o (a ' ) ) ]  ~/2 H'0~, (0)/H'0~, (~'). 

I t  i s  e v i d e n t  f r o m  t h e  b a s i c  Eqs .  ( 1 . 8 ) - ( 1 . 1 2 )  t h a t  i n  o r d e r  t o  d e t e r m i n e  t h e  f i e l d s ,  i t  i s  
s u f f i c i e n t  t o  know t h e  d i m e n s i o n l e s s  f u n c t i o n  h '  t o  w i t h i n  a c o n s t a n t  f a c t o r .  We s h a l l  u s e  
t h e  n o r m a l i z a t i o n  AI '  ( 0 )  = l b e l o w .  The f i r s t - a p p r o x i m a t i o n  f u n c t i o n s  a r e  e x p r e s s e d  i n  
t e r m s  o f  v x ' a '  and  f o r  G i -- 0 ,  a c c o r d i n g  t o  Eqs .  ( 1 . 8 ) - ( 1 . 1 2 ) ,  h a v e  t h e  f o r m  

v;~,/v'l~, = - -  H'o~,/H'o~,, 9'ff9'o = v'i~r/bo, 
t 

H'lf~,/Ho~, = v'l~,/b; (Ho/H;[3,)  2, Hick, = 0 .  

One possible approach to the refinement of Eq. (1.13) is to invoke the equation for the charac- 
teristics C+ and C-: 

t t at (vim, +-+-- b ' ) - t ,  
h~ d~z' (1.17) 

]/'i = [Jlcct (~') ~ b' (~')1 [U;~t ((:Zi) -t- b t (~.,'1)] -1,  

which corresponds to Eq. (1.15) with u' = v1' ~, • b'. 

2. We now estimate the magnetoacoustic shock intensity I' and derive a relation be- 
tween the velocity of the front u' and the cross section A': 

I '  -= ( p '  - -  p~ ) /p~  ~ p ; / p ~  (t - -  T ' ) .  

We accomplish this on the basis of the equation of state of a polytropic gas p' = P0'(P'/ 
P0') 7, 7 = const, which is a simple way to model the function P'(P0'). We write the inten- 
sity in the representation 

I '  ~ yp~/p~ (t - -  T')  ~ - -  ? (t - -  T')  [ b ~ '  (a ' ,  0)] -~, ( 2 . 1 )  

where it is required to determine (t - T'). The value T O ' e a'/b0'(~l') corresponds to the 
linear approximation of T' for the characteristic C+. Introducing the new function L'(~') = 
T o ' - T', we describe the shock front by the relation 

t 

t - -  T O = - - L '  (~'). ( 2 . 2 )  
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From Eq. (2.1) we obtain the following generalization of the eikonal equation (1.13) 
er form of Eq. (1.17)]: 

t dt i dL' 
h~' ~(~;) ~'" 

[anoth- 

(2.3) 

The velocity of a low-intensity shock front is the arithmetic mean of the characteristic 
velocity before and after the front: 

~' = ~'~d~"/dv ' ~ .  (~/2) [b'o (~'~) + ( , '~ ,  + b')] ~ b; ( ~ ; )  + 

+ (1/2)(v' l~, + b~)( t  - -  T) ~ b'o (a~) - -  (L ' /2 ) (v ' l~ ,  + b',). 
( 2 . 4 ) !  

Equations (2.3) and (2.4) can be used to find a differential equation for the correction L~: 

. . . .  2 r~' ta' ]1/~. ( 2 ] L ' ) d L ' / d ~ ' - ~ - - ( v ~ ' + b ' ~ ) ( b  o (a~ ) )  , L ' = K  o, , ,O) /B '  

The parameter K0 = const takes into account the shape of the body and the boundary condition 
on its surface. It is impossible to determine K 0 within the framework of the given method. 
A representation for K 0 can ~e obtained by other methods (see, e.g., [4]) in the solution of 
the simpler problem v 0 = const, b 0 = const. We write Eq. (2.1) in the form 

z' = (2/3) Ko [bg (~'~)]-1 v (B"~') -1/: 

In the special case of a homogeneous medium and for v 0 = const we have B' 

i) V I '  --- (A')-l/2d~' 

- (A') I/2 and 

For a conical shock front in this situation, A' - r' (r' is the radial distance in cylindri- 
cal coordinates), and I' (r') -3/4 is Landau's well-known asymptotic representation for 
axisymmetrical shock fronts. Equation (2.4) can be used to find the most important relation 
for the subsequent solution of the problem, namely the relation between the velocity of the 
shock front and the cross section of the ray tube: 

u ' ( A ' )  = F ' ( A ' )  

( , , ,3 K0(B,Cy)-l ,2)  F '  ( d ' ) ~  b o ( a l )  + ~- 
(2.5) 

3. The existence of the relation (2.5) between u' and A' permits the well-known "shock 
dynamics" approximation to be used in the primed coordinate system, provided that the proper- 
ties of the flow vary sufficiently slowly in the unperturbed state. Such a description is 
essentially a nonlinear generalization of the approximation of linear ray theory. We use 
Eqs. (1.5) and (1.6) for this purpose. Of fundamental importance is the fact that e a, [the 
unit vector in Eq. (1.3)] coincides with the ray direction (the direction of energy trans- 
port) and is perpendicular to the shock front. The function e a, characterizes the eikonal, 
and Eq. (1.5) generalizes the representations (1.13) and (2.4). Oddly enough, Eqs. (1.5) 
and (1.6) are suitable for the description of both weak and strong shock waves [5]. We have 
therefore obtained a closed system of equations (1.3), (1.5), (1.6), (2.5). The approxima- 
tion (1.3), (1.5), (1.6) can be used by virtue of the local immobility of the medium in the 
primed coordinate system and the orthogonality of the rays to the shock front. In the pri- 
mary frame the eikonal equation and the transport equation acquire the form 

IVT[ = u-l; ( 3 . 1 )  

div (ca~A) =- O. ( 3 . 2 )  

H e r e ,  i n  c o n t r a s t  w i t h  Eq. ( 1 . 3 ) ,  t h e  r a y  d i r e c t i o n  e a i s  n o t  o r t h o g o n a l  t o  t h e  s h o c k  f r o n t ,  
b e c a u s e  i s o t r o p i c i t y  does  n o t  e x i s t  in  t h e  a b o v e - m e n t i o n e d  s e n s e  in  t h e  p r i m a r y  f r a m e .  ~'For 
f i n d i n g  e:  we p r o c e e d  a s  f o l l o w s .  We w r i t e  Eq. ( 1 . 5 )  i n  t h e  H a m i l t o n - J a c o b i  f o r m  ~ ' = 0, 
whe re  J d '  i s  t h e  H a m i l t o n i a n :  

= ~ L ~ J  + ~ J  + ( ~ ) -  ; ~ )  (3.3) 
Note that e a, in Eq. (1.3) has the following significance with the Hamiltonian ~': 
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% '  o ((v)' It;) a ((v)' it') 

The unit vector e a in the ray direction is analogous: 

% = 0 ~ / O ( v T )  I 0 ~ / # ( v T ) [  -1 ---- l~e x @ 12ey + lae z, ( 3 . 4 )  

d x '  == d x  - -  Vo( z )dT ,  @ '  = @ ,  d z '  = dz .  

A l l  t h a t  r e m a i n s  i s  t o  f i n d  a r e p r e s e n t a t i o n  f o r  t h e  H a m i l t o n i a n  9N i n  t h e  p r i m a r y  f r a m e ,  
It follows from the relation dT = dT' that 

OT' /Ox~ = (aT/OxO (1 -- voar/Ox)-l, ( 3 . 5 )  
i -=  t ,  2 ,  3 ,  x 1 =  x ,  x 2 = y ,  x3 = z ,  

f r o m  E q s .  ( 3 . 3 )  and  ( 3 . 5 )  we h a v e  

~ i-~[(~/~ ~ ~ 2  
-- ,2 (r) j' 

and we obtainthe direction cosines Zz, s and s in Eq. (3.4) in the form 

L = ~ L ~ x  + "o/V ) +'oko.. ] j' 
t OT ( aT ; z~=~, 1 - ~o ~ ) ,  

+ + 

~I~',~ ~I~',~ ( ~ t ~ t t  "~ + ~ j  ~~ ~ j  j~ " 

We now determine the relations between the cross sections A and A'. Since A is the cross 
section of the ray tube in the laboratory frame, A' is the area of the surface "cut out" by 
the tube on the shock front. Bearing this fact in mind, we have 

A = A ' ( % ,  n), (3.6) 

where n is the unit normal to the shock front: 

n ---- vT/[vTI . (3.7) 

Equation (2.5) can be used to obtain the required relation between u and A: 

u(A) = F(A). (3.8) 

As a result, we have the closed system of equations (3.1), (3.2), (3.4), (3.6)-(3.8), 
which can be solved numerically on a computer. We note that the description (3.1), (3.2), 
(3.4), (3.6) generalizes the data of [6], in which the case of uniform flow in a homogeneous 
medium is analyzed, and a more cumbersome and less constructive method than (3.4) is used to 
find the expression for e =. This is done by transforming Eq. (1.6) into a fixed system and 
reducing it to divergence form. It is then possible to find e~. The Hamiltonian ~ simplifies 
the procedure, making it possible to find e= in Eq. (3.4) as the result of differentiating 
~i. The system (3.1), (3.2), (3.4), (3.6) is suitable for the description of shock waves of 
any intensity, provided that it is augmented with the appropriate relation between u and A. 
For weak shock waves, on the other hand, the situation is simplified by the closeness of the 

shock velocity u to the linear Alfven velocity b0; also, we have A = ~ An~A~. 

On the basis of the relation (2.5), the eikonal equation (3.1) acquires the form 

i ~  ~ f ~  (~_ o ~ I ~  3 ~oi~| -~, <3.~) 

where (3/4)K0(B~) -I/2 << b0 for weak shock waves, so that Eq. (3.9) can be solved by succes- 
sive approximations~ The zeroth approximation corresponds to K 0 = 0, which is the first 
approximation for the ray description. In thisapproximation the ray paths are independent 
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of the field: For K 0 = 0, Eq. (3.9) splits off from the system (3.2), (3.6)-(3.8); T(x~ y, 
z) and e ~(x, y, z) are determined from the given functions v0(z) and b0(z). 

The above-proposed scheme is based on rejection of the terms G i in the system (1.8)- 
(1.12). The solution can be subsequently refined either by a successive-approximation pro- 
cedure or by obtaining a Riccati equation for G i ~ 0. 
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ELECTRIC FIELD BUILDUP IN PORE COLLAPSE 

V. V. Surkov UDC 534.222.2 

The rapid deformation and fracture of solids gives rise to strong electric fields with 
a resultant emission of particles, x-rays, and radio-frequency radiation from the fracture 
surface. The field is generated by the production and separation of point defects and 
charged dislocations on the shock front [i] and at the tips of growing cracks [2, 3]~ In 
this paper we examine the electric effects arising near cavities and pores which collapse 
in a shock wave. 

Consider a porous dielectric medium. When the material undergoes impact compression, 
the highest deformation rates occur in the plastic zones localized around cavities and in- 
homogeneous inclusions [4]. These zones are production sites of point defects and electri- 
cally charged dislocations. The defect multiplication rate is proportional to the shear de- 
formation rate dy/dt. At low concentrations the recombination of point defects can be ne- 
glected [i]. In the case of two defect types with opposite charges, the equation of conti- 
nuity (i = i, 2) has the form 

ani M ~ F '  ~ 0-~ + div ji = d? ]i = niv - -  6 grad nivi + q-~- E. ( 1 )  

H e r e  M i s  t h e  m u l t i p l i c a t i o n  c o n s t a n t ;  n i a n d  q i  a r e  t h e  p o i n t - d e f e c t  c o n c e n t r a t i o n  a n d  
c h a r g e ,  o r  t h e  n u m b e r  o f  d i s l o c a t i o n s  p e r  u n i t  a r e a  a n d  t h e  c h a r g e  p e r  u n i t  d i s l o c a t i o n  
l e n g t h ;  t h e  d e f e c t  c u r r e n t  d e n s i t y  ] i  h a s  t h r e e  c o m p o n e n t s ,  i n v o l v i n g  t h e  l a t t i c e  v e l o c i t y  
o f  m o t i o n  v ,  t h e  d e f e c t  d i s p l a c e m e n t  r e l a t i v e  t o  t h e  l a t t i c e  ( d i f f u s i o n ) ,  a n d  t h e  d r i f t  i n  
t h e  f i e l d  o f  s t r e n g t h  E ; v i i s  t h e  d i s p l a c e m e n t  f r e q u e n c y  o f  a d e f e c t  o v e r  o n e  i n t e r a t o m i c  
distance 5(5v i is the dislocation velocity); o i is the ionic conductivity. 

For rapidly varying loads, Ji = n vi at first approximation. Leaving the defect type 
unspecified, we substitute this in (i). Assuming the material surrounding the pores is in- 
compressible, i.e., div v = 0, we obtain n i ~ n = n o + My in Lagrangian coordinates (n o is 
the initial defect concentration). 

In the following approximation we seek small corrections m i << n. Setting in (i) n i = 
n + mi, we get 

am i 
0---s + div  miv - -  52Anvi + t div ~iE = 0, 

q~ (2) 
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